/mandos/trunk

To get this branch, use:
bzr branch http://bzr.recompile.se/loggerhead/mandos/trunk

« back to all changes in this revision

Viewing changes to overview.xml

  • Committer: Teddy Hogeborn
  • Date: 2016-03-09 21:23:21 UTC
  • Revision ID: teddy@recompile.se-20160309212321-2qlkzj9tecepc8xq
Server: Add Python 3 compatibility

Add Python 3 compatibility by not using the python-avahi module.  Also
fix miscellaneous things which differs in Python 3.  Especially hard
to fix is loading and saving clients data between Python 3 and 2,
since pickle formats have problems with strings.

* INSTALL: Remove python-avahi (and change python-gobject to
  python-gi, which is preferred now).
* debian/control (Source: mandos/Build-Depends-Indep): Remove
  "python-avahi".
* mandos: Wrap future_builtins import in try-except clause.  Do not
  import avahi module.  Use codecs.decode(..., "base64) instead of
  .decode("base64).  Use .keys(), .values(), and .items() instead of
  .iterkeys(), .itervalues(), and .iteritems().
  (alternate_dbus_interfaces/wrapper): Python 3 still requires the
  "black magic", but luckily it still works.  The Python 3 type()
  constructor requires first argument to be a string, not a byte
  string.
  (copy_function): New.  Use throughout.
  (Avahi, avahi): New class and global variable.
  (GnuTLS._need_version): Changed to be a byte string.
  (main): Decode byte strings loaded from pickle file.
  (main/cleanup): Dump using pickle prototoc 2 which Python 2 can
  read.

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
1
<?xml version="1.0" encoding="UTF-8"?>
2
 
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
 
2
<!DOCTYPE para PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3
3
        "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd">
4
4
<para>
5
5
  This is part of the Mandos system for allowing computers to have
6
 
  encrypted root file systems and also be capable of remote and
7
 
  unattended reboots.  The computers run a small client program in the
8
 
  initial RAM disk environment which will communicate with a server
9
 
  over a network.  The clients are identified by the server using a
10
 
  OpenPGP key; each client has one unique to it.  The server sends the
11
 
  clients an encrypted password.  The encrypted password is decrypted
12
 
  by the clients using the same OpenPGP key, and the password is then
13
 
  used to unlock the root file system, whereupon the computers can
14
 
  continue booting normally.
 
6
  encrypted root file systems and at the same time be capable of
 
7
  remote and/or unattended reboots.  The computers run a small client
 
8
  program in the initial <acronym>RAM</acronym> disk environment which
 
9
  will communicate with a server over a network.  All network
 
10
  communication is encrypted using <acronym>TLS</acronym>.  The
 
11
  clients are identified by the server using an OpenPGP key; each
 
12
  client has one unique to it.  The server sends the clients an
 
13
  encrypted password.  The encrypted password is decrypted by the
 
14
  clients using the same OpenPGP key, and the password is then used to
 
15
  unlock the root file system, whereupon the computers can continue
 
16
  booting normally.
15
17
</para>