1
1
<?xml version="1.0" encoding="UTF-8"?>
2
2
<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3
3
"http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
4
<!ENTITY VERSION "1.0">
4
5
<!ENTITY COMMANDNAME "mandos-client">
5
<!ENTITY TIMESTAMP "2009-02-09">
6
<!ENTITY % common SYSTEM "../common.ent">
6
<!ENTITY TIMESTAMP "2008-09-06">
10
9
<refentry xmlns:xi="http://www.w3.org/2001/XInclude">
12
11
<title>Mandos Manual</title>
13
<!-- NWalsh’s docbook scripts use this to generate the footer: -->
12
<!-- Nwalsh’s docbook scripts use this to generate the footer: -->
14
13
<productname>Mandos</productname>
15
<productnumber>&version;</productnumber>
14
<productnumber>&VERSION;</productnumber>
16
15
<date>&TIMESTAMP;</date>
36
34
<holder>Teddy Hogeborn</holder>
37
35
<holder>Björn Påhlsson</holder>
39
37
<xi:include href="../legalnotice.xml"/>
43
41
<refentrytitle>&COMMANDNAME;</refentrytitle>
44
42
<manvolnum>8mandos</manvolnum>
121
115
</refsynopsisdiv>
123
117
<refsect1 id="description">
124
118
<title>DESCRIPTION</title>
126
120
<command>&COMMANDNAME;</command> is a client program that
127
121
communicates with <citerefentry><refentrytitle
128
122
>mandos</refentrytitle><manvolnum>8</manvolnum></citerefentry>
129
to get a password. In slightly more detail, this client program
130
brings up a network interface, uses the interface’s IPv6
131
link-local address to get network connectivity, uses Zeroconf to
132
find servers on the local network, and communicates with servers
133
using TLS with an OpenPGP key to ensure authenticity and
134
confidentiality. This client program keeps running, trying all
135
servers on the network, until it receives a satisfactory reply
136
or a TERM signal is received. If no servers are found, or after
137
all servers have been tried, it waits indefinitely for new
123
to get a password. It uses IPv6 link-local addresses to get
124
network connectivity, Zeroconf to find servers, and TLS with an
125
OpenPGP key to ensure authenticity and confidentiality. It
126
keeps running, trying all servers on the network, until it
127
receives a satisfactory reply or a TERM signal is received.
141
130
This program is not meant to be run directly; it is really meant
198
<term><option>--interface=<replaceable
199
>NAME</replaceable></option></term>
187
<term><option>--interface=
188
<replaceable>NAME</replaceable></option></term>
201
190
<replaceable>NAME</replaceable></option></term>
204
193
Network interface that will be brought up and scanned for
205
Mandos servers to connect to. The default is
194
Mandos servers to connect to. The default it
206
195
<quote><literal>eth0</literal></quote>.
210
199
specifies the interface to use to connect to the address
214
Note that since this program will normally run in the
215
initial RAM disk environment, the interface must be an
216
interface which exists at that stage. Thus, the interface
217
can not be a pseudo-interface such as <quote>br0</quote>
218
or <quote>tun0</quote>; such interfaces will not exist
219
until much later in the boot process, and can not be used
223
<replaceable>NAME</replaceable> can be the empty string;
224
this will not use any specific interface, and will not
225
bring up an interface on startup. This is not
226
recommended, and only meant for advanced users.
280
<term><option>--delay=<replaceable
281
>SECONDS</replaceable></option></term>
284
After bringing the network interface up, the program waits
285
for the interface to arrive in a <quote>running</quote>
286
state before proceeding. During this time, the kernel log
287
level will be lowered to reduce clutter on the system
288
console, alleviating any other plugins which might be
289
using the system console. This option sets the upper
290
limit of seconds to wait. The default is 2.5 seconds.
296
254
<term><option>--debug</option></term>
452
410
<informalexample>
454
412
Run in debug mode, with a custom key, and do not use Zeroconf
455
to locate a server; connect directly to the IPv6 link-local
456
address <quote><systemitem class="ipaddress"
457
>fe80::aede:48ff:fe71:f6f2</systemitem></quote>, port 4711,
458
using interface eth2:
413
to locate a server; connect directly to the IPv6 address
414
<quote><systemitem class="ipaddress"
415
>2001:db8:f983:bd0b:30de:ae4a:71f2:f672</systemitem></quote>,
416
port 4711, using interface eth2:
462
420
<!-- do not wrap this line -->
463
<userinput>&COMMANDNAME; --debug --pubkey keydir/pubkey.txt --seckey keydir/seckey.txt --connect fe80::aede:48ff:fe71:f6f2:4711 --interface eth2</userinput>
421
<userinput>&COMMANDNAME; --debug --pubkey keydir/pubkey.txt --seckey keydir/seckey.txt --connect 2001:db8:f983:bd0b:30de:ae4a:71f2:f672:4711 --interface eth2</userinput>
466
424
</informalexample>
469
427
<refsect1 id="security">
470
428
<title>SECURITY</title>
491
449
The only remaining weak point is that someone with physical
492
450
access to the client hard drive might turn off the client
493
451
computer, read the OpenPGP keys directly from the hard drive,
494
and communicate with the server. To safeguard against this, the
495
server is supposed to notice the client disappearing and stop
496
giving out the encrypted data. Therefore, it is important to
497
set the timeout and checker interval values tightly on the
498
server. See <citerefentry><refentrytitle
452
and communicate with the server. The defense against this is
453
that the server is supposed to notice the client disappearing
454
and will stop giving out the encrypted data. Therefore, it is
455
important to set the timeout and checker interval values tightly
456
on the server. See <citerefentry><refentrytitle
499
457
>mandos</refentrytitle><manvolnum>8</manvolnum></citerefentry>.