127
166
communicates with <citerefentry><refentrytitle
128
167
>mandos</refentrytitle><manvolnum>8</manvolnum></citerefentry>
129
168
to get a password. In slightly more detail, this client program
130
brings up a network interface, uses the interface’s IPv6
131
link-local address to get network connectivity, uses Zeroconf to
132
find servers on the local network, and communicates with servers
133
using TLS with an OpenPGP key to ensure authenticity and
134
confidentiality. This client program keeps running, trying all
135
servers on the network, until it receives a satisfactory reply
136
or a TERM signal is received. If no servers are found, or after
137
all servers have been tried, it waits indefinitely for new
169
brings up network interfaces, uses the interfaces’ IPv6
170
link-local addresses to get network connectivity, uses Zeroconf
171
to find servers on the local network, and communicates with
172
servers using TLS with a raw public key to ensure authenticity
173
and confidentiality. This client program keeps running, trying
174
all servers on the network, until it receives a satisfactory
175
reply or a TERM signal. After all servers have been tried, all
176
servers are periodically retried. If no servers are found it
177
will wait indefinitely for new servers to appear.
180
The network interfaces are selected like this: If any interfaces
181
are specified using the <option>--interface</option> option,
182
those interface are used. Otherwise,
183
<command>&COMMANDNAME;</command> will use all interfaces that
184
are not loopback interfaces, are not point-to-point interfaces,
185
are capable of broadcasting and do not have the NOARP flag (see
186
<citerefentry><refentrytitle>netdevice</refentrytitle>
187
<manvolnum>7</manvolnum></citerefentry>). (If the
188
<option>--connect</option> option is used, point-to-point
189
interfaces and non-broadcast interfaces are accepted.) If any
190
used interfaces are not up and running, they are first taken up
191
(and later taken down again on program exit).
194
Before network interfaces are selected, all <quote>network
195
hooks</quote> are run; see <xref linkend="network-hooks"/>.
141
198
This program is not meant to be run directly; it is really meant
188
245
assumed to separate the address from the port number.
191
This option is normally only useful for testing and
248
Normally, Zeroconf would be used to locate Mandos servers,
249
in which case this option would only be used when testing
198
256
<term><option>--interface=<replaceable
199
>NAME</replaceable></option></term>
257
>NAME</replaceable><arg rep='repeat'>,<replaceable
258
>NAME</replaceable></arg></option></term>
201
<replaceable>NAME</replaceable></option></term>
260
<replaceable>NAME</replaceable><arg rep='repeat'>,<replaceable
261
>NAME</replaceable></arg></option></term>
204
Network interface that will be brought up and scanned for
205
Mandos servers to connect to. The default is
206
<quote><literal>eth0</literal></quote>.
264
Comma separated list of network interfaces that will be
265
brought up and scanned for Mandos servers to connect to.
266
The default is the empty string, which will automatically
267
use all appropriate interfaces.
209
If the <option>--connect</option> option is used, this
210
specifies the interface to use to connect to the address
270
If the <option>--connect</option> option is used, and
271
exactly one interface name is specified (except
272
<quote><literal>none</literal></quote>), this specifies
273
the interface to use to connect to the address given.
214
276
Note that since this program will normally run in the
215
277
initial RAM disk environment, the interface must be an
216
278
interface which exists at that stage. Thus, the interface
217
can not be a pseudo-interface such as <quote>br0</quote>
218
or <quote>tun0</quote>; such interfaces will not exist
219
until much later in the boot process, and can not be used
279
can normally not be a pseudo-interface such as
280
<quote>br0</quote> or <quote>tun0</quote>; such interfaces
281
will not exist until much later in the boot process, and
282
can not be used by this program, unless created by a
283
<quote>network hook</quote> — see <xref
284
linkend="network-hooks"/>.
223
<replaceable>NAME</replaceable> can be the empty string;
224
this will not use any specific interface, and will not
225
bring up an interface on startup. This is not
226
recommended, and only meant for advanced users.
287
<replaceable>NAME</replaceable> can be the string
288
<quote><literal>none</literal></quote>; this will make
289
<command>&COMMANDNAME;</command> only bring up interfaces
290
specified <emphasis>before</emphasis> this string. This
291
is not recommended, and only meant for advanced users.
369
510
server could be found and the password received from it could be
370
511
successfully decrypted and output on standard output. The
371
512
program will exit with a non-zero exit status only if a critical
372
error occurs. Otherwise, it will forever connect to new
373
<application>Mandos</application> servers as they appear, trying
374
to get a decryptable password and print it.
513
error occurs. Otherwise, it will forever connect to any
514
discovered <application>Mandos</application> servers, trying to
515
get a decryptable password and print it.
378
519
<refsect1 id="environment">
379
520
<title>ENVIRONMENT</title>
523
<term><envar>MANDOSPLUGINHELPERDIR</envar></term>
526
This environment variable will be assumed to contain the
527
directory containing any helper executables. The use and
528
nature of these helper executables, if any, is
529
purposefully not documented.
381
This program does not use any environment variables, not even
382
the ones provided by <citerefentry><refentrytitle
535
This program does not use any other environment variables, not
536
even the ones provided by <citerefentry><refentrytitle
383
537
>cryptsetup</refentrytitle><manvolnum>8</manvolnum>
542
<refsect1 id="network-hooks">
543
<title>NETWORK HOOKS</title>
545
If a network interface like a bridge or tunnel is required to
546
find a Mandos server, this requires the interface to be up and
547
running before <command>&COMMANDNAME;</command> starts looking
548
for Mandos servers. This can be accomplished by creating a
549
<quote>network hook</quote> program, and placing it in a special
553
Before the network is used (and again before program exit), any
554
runnable programs found in the network hook directory are run
555
with the argument <quote><literal>start</literal></quote> or
556
<quote><literal>stop</literal></quote>. This should bring up or
557
down, respectively, any network interface which
558
<command>&COMMANDNAME;</command> should use.
560
<refsect2 id="hook-requirements">
561
<title>REQUIREMENTS</title>
563
A network hook must be an executable file, and its name must
564
consist entirely of upper and lower case letters, digits,
565
underscores, periods, and hyphens.
568
A network hook will receive one argument, which can be one of
573
<term><literal>start</literal></term>
576
This should make the network hook create (if necessary)
577
and bring up a network interface.
582
<term><literal>stop</literal></term>
585
This should make the network hook take down a network
586
interface, and delete it if it did not exist previously.
591
<term><literal>files</literal></term>
594
This should make the network hook print, <emphasis>one
595
file per line</emphasis>, all the files needed for it to
596
run. (These files will be copied into the initial RAM
597
filesystem.) Typical use is for a network hook which is
598
a shell script to print its needed binaries.
601
It is not necessary to print any non-executable files
602
already in the network hook directory, these will be
603
copied implicitly if they otherwise satisfy the name
609
<term><literal>modules</literal></term>
612
This should make the network hook print, <emphasis>on
613
separate lines</emphasis>, all the kernel modules needed
614
for it to run. (These modules will be copied into the
615
initial RAM filesystem.) For instance, a tunnel
617
<quote><literal>tun</literal></quote> module.
623
The network hook will be provided with a number of environment
628
<term><envar>MANDOSNETHOOKDIR</envar></term>
631
The network hook directory, specified to
632
<command>&COMMANDNAME;</command> by the
633
<option>--network-hook-dir</option> option. Note: this
634
should <emphasis>always</emphasis> be used by the
635
network hook to refer to itself or any files in the hook
636
directory it may require.
641
<term><envar>DEVICE</envar></term>
644
The network interfaces, as specified to
645
<command>&COMMANDNAME;</command> by the
646
<option>--interface</option> option, combined to one
647
string and separated by commas. If this is set, and
648
does not contain the interface a hook will bring up,
649
there is no reason for a hook to continue.
654
<term><envar>MODE</envar></term>
657
This will be the same as the first argument;
658
i.e. <quote><literal>start</literal></quote>,
659
<quote><literal>stop</literal></quote>,
660
<quote><literal>files</literal></quote>, or
661
<quote><literal>modules</literal></quote>.
666
<term><envar>VERBOSITY</envar></term>
669
This will be the <quote><literal>1</literal></quote> if
670
the <option>--debug</option> option is passed to
671
<command>&COMMANDNAME;</command>, otherwise
672
<quote><literal>0</literal></quote>.
677
<term><envar>DELAY</envar></term>
680
This will be the same as the <option>--delay</option>
681
option passed to <command>&COMMANDNAME;</command>. Is
682
only set if <envar>MODE</envar> is
683
<quote><literal>start</literal></quote> or
684
<quote><literal>stop</literal></quote>.
689
<term><envar>CONNECT</envar></term>
692
This will be the same as the <option>--connect</option>
693
option passed to <command>&COMMANDNAME;</command>. Is
694
only set if <option>--connect</option> is passed and
695
<envar>MODE</envar> is
696
<quote><literal>start</literal></quote> or
697
<quote><literal>stop</literal></quote>.
703
A hook may not read from standard input, and should be
704
restrictive in printing to standard output or standard error
705
unless <varname>VERBOSITY</varname> is
706
<quote><literal>1</literal></quote>.
388
711
<refsect1 id="files">
389
712
<title>FILES</title>
491
838
The only remaining weak point is that someone with physical
492
839
access to the client hard drive might turn off the client
493
computer, read the OpenPGP keys directly from the hard drive,
494
and communicate with the server. To safeguard against this, the
495
server is supposed to notice the client disappearing and stop
496
giving out the encrypted data. Therefore, it is important to
497
set the timeout and checker interval values tightly on the
498
server. See <citerefentry><refentrytitle
840
computer, read the OpenPGP and TLS keys directly from the hard
841
drive, and communicate with the server. To safeguard against
842
this, the server is supposed to notice the client disappearing
843
and stop giving out the encrypted data. Therefore, it is
844
important to set the timeout and checker interval values tightly
845
on the server. See <citerefentry><refentrytitle
499
846
>mandos</refentrytitle><manvolnum>8</manvolnum></citerefentry>.
502
849
It will also help if the checker program on the server is
503
850
configured to request something from the client which can not be
504
spoofed by someone else on the network, unlike unencrypted
505
<acronym>ICMP</acronym> echo (<quote>ping</quote>) replies.
851
spoofed by someone else on the network, like SSH server key
852
fingerprints, and unlike unencrypted <acronym>ICMP</acronym>
853
echo (<quote>ping</quote>) replies.
508
856
<emphasis>Note</emphasis>: This makes it completely insecure to